Research Article | | Peer-Reviewed

Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon)

Received: 22 April 2024     Accepted: 3 May 2024     Published: 24 May 2024
Views:       Downloads:
Abstract

Synthetic pesticides present worldwide risks of contamination of humans, livestock and the environment due to the strong persistence and the toxic residues in fruits and vegetables. Natural biopesticides of local plant origin present low persistence and are the best alternative for the control of crop pests. In the Adamaoua region (Northern Cameroon), few studies exist concerning effects of botanical pesticides on the behavior of beneficial insects. Studies aimed to draw up a list of pollinating insects on flowers of Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae), in situations of treatment with botanical pesticides compared to the situation of the use of synthetic insecticide and to determine the effect of the biopesticides on the behavior of the main floricultural insects. Field investigations were carried out during two cowpea cultivation campaigns (June to September 2021 and June to October 2022) in Dang (suburb of Ngaoundere) on the effect of leaves extracts of local plant origin on the foraging behavior of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) and the main sap-sucking insect Aphis craccivora Koch, 1854 (Hemiptera: Aphididae). Forty-four cowpea plots of 4x3.5 m each distributed according to the randomized complete block model (four untreated plots as negative control, four plots treated with the synthetic insecticide Parastar (40EC 535/ 10/IN, 20 g/l of imidacloprid and 20 g/l of lamda-cyhalothrin) as positive control, and 36 experimental plots treated with three concentrations (10%, 20% and 30%) of aqueous leaves extract of Calotropis procera (Gentianales: Apocynaceae), Eucalyptus camaldulensis (Myrtales: Myrtaceae), and Tithonia diversifolia (Asterales: Asteraceae) respectively, made it possible to conduct four treatments: (1) flowers left to freely pollination, (2) flowers protected against pollinators, (3) flowers visited exclusively by Ap. mellifera and (4) flowers protected against insects. Among eight species (four orders, four families and seven genera) recorded on the flowers of V. unguiculata, the domestic bee Ap. mellifera was the most common and collected nectar and pollen. The control plots and those treated with 10% or 20% aqueous leaves extracts allowed the bee to carry out its activity. Plots treated with 30% extract of each plant and those treated with the synthetic insecticide Parastar, drastically altered the rhythm and speed of activity in Ap. mellifera foragers. This behavior became less coordinated and slow on treated plants. It would be wise to use 10% or 20% aqueous extracts as botanical insecticides and an alternative to the synthetic insecticide Parastar.

Published in American Journal of Entomology (Volume 8, Issue 2)
DOI 10.11648/j.aje.20240802.12
Page(s) 31-59
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Floricultural Insects, Vigna unguiculata, Botanical insecticides, Chemical Pest Control

References
[1] Abebe, B. K., Alemayehu, M. T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 202210, 100383.
[2] Omoigui, L. O., Kamara, A. Y., Batieno, J., Iorlamen, T., Kouyate, Z., Yirzagla, J., Garba, U., Diallo, S. Guide sur la production de niébé en Afrique de l’Ouest. Ibadan, Nigeria: International Institute of Tropical Agriculture (IITA); 2018, pp. 1-65.
[3] Fery, R. L. The genetics of cowpea: a review of the world literature. In Cowpea research, production and utilization, Singh, S. R., Rachie, K. O., eds., Wiley, New York, United States, 1985, pp. 25-62.
[4] Brink, M., Belay, G. Plant Resources of Tropical Africa 1. Cereals and Pulses. Wageningen, Netherlands: PROTA Foundation, Backhuys Puplisher, Netherlands/CTA; 2006, 1-328.
[5] Horn, L., Shimelis, H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences. 2020, 65, 83-91.
[6] Owade, J. O., Abong, G., Okoth, M., Mwang’ombe, A. W. A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science & Nutrition. 2020, 8, 36-47.
[7] Singh, B. B., Ajeigbe, H. A., Tarawali, S. A., Fernandez-Rivera, S., Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crops Research. 2003, 84(s 1-2), 169-177.
[8] Amougou, P., Breuil, F., 2018. Le niébé, une légumineuse contre la malnutrition. Développée par l'IRAD au Cameroun. Available from:
[9] Food and Agriculture Organization. FAO: Statistical Yearbook 2022. Rome, Italy, 2022, pp. 1-382.
[10] Food and Agriculture Organization Statistics. FAOSTAT: Cowpeas, dry. Available from:
[11] Adamou, M., Kosini, D., Tchoubou-Salé, A., Massah, O. D., Tchocgnia, T. F. C., Mohammadou, M., Youssoufa, O., Nukenine, E. N. Impact of aqueous extracts of Cassia occidentalis, Eucalyptus camaldulensis and Hyptis suaveolens on the entomofauna and the seed yield of Gossypium hirsutum at Bokle (Garoua, Cameroon). Heliyon. 2022, 8(10), e 10937.
[12] Son, D., Somda, I., Legreve, A., Schiffers, B. Pratiques phytosanitaires des producteurs de tomates du Burkina Faso et risques pour la santé et l’environnement. Cahier Agriculture. 2017, 26(2), 25005-25008.
[13] Ministry of Agriculture and Rural Development (Cameroon). MINADER: Liste des pesticides homologués au Cameroun au 18 Avril 2019. Liste réservée au grand public. Ministère de l’Agriculture et de Développement Rural. Commission Nationale d’Homologation des Produits Phytosanitaires et de Certification des Appareils de Traitement (CNHPPCZT), Yaoundé, Cameroun, 2019. Available from
[14] Mohammadou, M., Adamou, M., Taïmanga, Kosini, D., Kenne, M. Seed Yield Improvement in Vigna unguiculata (L.) (Fabaceae): Efficiency of Pollinators and Impact of Aqueous Leaf Extract of Three Plant Species in North Cameroon. Asian Journal of Crop Science. 2023a, 8(3), 146-172.
[15] McGregor, S. E. Insect pollination of cultivated crop plants. Agricultural Research Service. Washington: United States Department of Agriculture, Agric. Handb. 496; 1976, pp. 1-411.
[16] Faegri, K., Pijl, L. V. D. The principle of pollination ecology. 3rd revised edition; Oxford: Pergamon Press; 1979, pp. 1-244.
[17] Segeren, P., Mulder, V., Beetsma, J., Sommeijer, R. Apiculture sous les tropiques. Agrodok 32, 5ème edition; Wageningen: Agromisa; 1996, pp. 1-88.
[18] Tchuenguem Fohouo, F.-N., Ngakou, A., Kengni, B. S. Pollination and yield responses of cowpea (Vigna unguiculata L. Walp.) to the foraging activity of Apis mellifera adansonii (Hymenoptera: Apidae) at Ngaoundéré (Cameroon). African Journal of Biotechnology. 2009, 8(9), 1988-1996.
[19] Djonwangwe, D, Pando, J. B., Balle, K., Mbonoma, B., Tchuenguem Fohouo, F.-N., Messi, J. Impact des activités de butinage de Xylocopa inconstans Smith F. 1874 (Hymenoptera: Apidae) et Megachile eurymera Smith 1864 (Hymenoptera: Megachilidae) sur la pollinisation et les rendements fruiter et grainier de Vigna unguiculata (L.) Walp. 1843 (Fabaceae) à Maroua, Extrême-Nord, Cameroun. Afrique Science. 2017, 13(5), 1-17.
[20] Adamou, M., Nepide, N. C., Mazi, S., Yatahaï, C. M. Impact of the pollinating activity of Apis mellifera (Hymenoptera: Apidae) on pod and seed yields of Vigna unguiculata (Fabaceae) variety BR1 in Djoumassi (North Cameroon). Cameroon Journal of Biological and Biochemical Sciences. 2020, 28(2), 146-159.
[21] Mazi, S., Kingha Tekombo, B. M., Adamou, M., Yatahaï, C. M. Impact of the foraging activity of Apis mellifera (Hymenoptera: Apidae) on increasing yields of Gossypium hirsutum (Malvaceae) in Djoumassi (Garoua, Cameroon). GSC Biological and Pharmaceutical Sciences. 2020, 12(1), 255-266.
[22] Desquesne, P. H.. Apiculture tropicale en Afrique de l’Ouest, L’abeille de France. 1996, 31-132.
[23] Mbianda, P. A., Douka, C., Dounia, Eloundou, C. E., Tchuenguem Fohouo. F.-N. Pollination efficiency of Apis mellifera L. (Hymenoptera: Apidae) on flowers of Vigna unguiculata (L.) Walp. (Fabaceae) at Bilone (Obala, Cameroon). International Jopurnal of Bioscience. 2019, 14 (1): 1-11.
[24] Tchekote, H., Nguiffeu Tajouo, E. L., Nguedia Melachio, M., Siyapdje, E. C., Mbeng, E. Farmers’ Accessibility to Pesticides and Generalization of Farming Practices besides the Legal Framework in Northern Bafou, in the Bamboutos Mountains (West Cameroon). Sustainability in Environment. 2019, 4(1), 41-56.
[25] Yang, E., Chuang, Y., Chen, Y., Chang, L. Abnormal foraging behavior induced by sub-lethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology. 2008, 101: 1743-1748.
[26] Sande, D., Mullen, J., Wetzstein, M., Houston, J. Environmental impacts from pesticide use: a case study of soil fumigation in Florida tomato production. International Journal of Environmental Research and Public Health. 2011, 8(12), 4649-4661.
[27] Ndakidemi, B., Mtei, K., Ndakidemi, P. Impacts of Synthetic and Botanical Pesticides on Beneficial Insects. Agricultural Science. 2016, 7(6), 364-372.
[28] Sonchieu, J., Ngassoum, M. B., Nantia, Akono, E., Laxman, P. S. Pesticide Applications on Some Vegetables Cultivated and Health Implications in Santa, North-West Cameroon. SSRG. International Journal of Agriculture and Environmental Research. 2018, 4(2), 39-46.
[29] Galani, Y. J. H., Houbraken, M., Wumbei, A., Djeugap, J. F., Fotio, D., Gong, Y. Y., Spanoghe, P. Contamination of Foods from Cameroon with Residues of 20 Halogenated Pesticides, and Health Risk of Adult Human Dietary Exposure. International Journal of Environmental Research and Public Health. 2021, 18(9), 5043.
[30] Sopkoutie, N. G. K., Abdulai A. N., Tarla, D. N., Galani, Y. J. H., Djeugap F. J., Ekengoue C. M., Tabang, W. M., Nya, E., Payne, V. K. Phytosanitary practices and evaluation of 17 pesticides residues in tomatoes fruits produced in Foumbot district Western Highland-Cameroon. European Scientific Journal. 2021, 17(1), 1.
[31] Smith, C. J., Perfetti, T. A. A comparison of the persistence, toxicity, and exposure to high-volume natural plant-derived and synthetic pesticides. Toxicology Research and Application. 2020, 4, 1–15.
[32] Thapa1, R., Nainabasti, A., Lamsal, A., Malla, S., Thapa, B., Subedi, Y., Ghimire, S. Pesticide Persistence in Agriculture and its hazardous effects on Environmental. International Journal of Applied Sciences and Biotechnology. 2022, 10(2), 75-83.
[33] Gupta, N., Sharma, N. & Ramniwas, S. Botanical Pesticides: Use of Plants in Pest Management. CGC International Journal of Contemporary Technology and Research. 2021, 4(1), 271-275.
[34] Pauly A., Breat, Y., Tchibozo, S., Aikpe, C. & Boeve, J. L. Hymenoptera Apoidea et Braconidae de quelques forêts sacrées du Sud-Bénin. Bulletin de la Société Royale Belge d'Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie. 2009, 45, 121-129.
[35] Kwapong, P. K., Danquah, P. O. A., Asare, A. T. Insect floral visitors of cowpea (Vigna unguiculata L.). Annals of Biological Research. 2013, 4, 12-18.
[36] Ige, O. E., Olotuah, O. F., Akerele, V. Floral biology and pollination ecology of cowpea (Vigna unguiculata L. Walp). Modern Applied Science. 2011, 5(4): 74-82.
[37] Mohammadou, M., Fouelifack-Nintidem, B., Adamou, M., Taimanga, Kossini, D., Tsekane, S. J., Ngamaleu-Siewe, B., Kenne, E. L., Yomon, A. K., Kenne, M.. Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon). American Journal of Entomology. 2023b, 7(2), 38-61.
[38] Kosini, D., Nukenine, E. N., Tofel, K. H., Goudoungou, J. W., Langsi, D. J., Adamou, M., Abdou, J. P., Djafsia, B., Ndouwe, H. M. T. Impact of environment on Callosobruchus maculatus (Coleoptera: Chrysomelidae) response to acetone extract of Gnidia kaussiana Meisn (Thymeleaceae) and Ocimum canum Sim (Lamiaceae) botanical insecticides. European Journal of Nutrition and Food Safety. 2020, 12(8), 128-139.
[39] Tunsi, G. Les différentes zones agroécologiques du Cameroun. Les Journées Nationales Géonumériques de l’AFIGEO & DECRIPTAGEO. Centre des Congrès, 13 & 14 Septembre 2023, Reims. Available from:
[40] Mope, J. Rapport annuel d’activités du Service Provincial du Développement Communautaire de l’Adamaoua. Service Provincial du Développement Communautaire de l’Adamaoua (éd.); Ngaoundéré; 1997, pp. 1-95.
[41] Letouzey, R. Etude phytogéographique du Cameroun. 5ème édition. Paris: Paul Le Chevalier; 1968, pp. 1-511.
[42] Djoufack-Meneta, V. Étude multiéchelle des précipitations et du couvert végétal au Cameroun: Analyses spatiales, tendances temporelles, facteurs climatiques et anthropiques de variabilité. Thèse de Doctorat d’État, Université de Yaoundé I - Université de Bourgogne, 2011.
[43] Climate-Data.org. Ngaoundere Climate (Cameroon). Available from:
[44] Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift. 2006, 15(3), 259-263.
[45] Yaouba, B., Bitondo, D. Analysis of rainfall dynamics in the three main cities of northern Cameroon. Research Square. 2022, 12(12), 1-15.
[46] MINEF (Ministry of Environment and Forestry (Cameroon),. Diagnostic général de la situation de l’environnement dans la province de l’Adamaoua. Document de base; PNUD/GTZ/BM; 1994, pp. 1-143.
[47] Sehou, A. Esclavage, émancipation et citoyenneté dans les lamidats de l’Adamaoua (Nord-Cameroun). Slaveries & Post-slaveries, 2019. Available from:
[48] Sreekanth. Field evaluation of certain leaf extracts for the control of mussel scale (Lepidosaphes piperis Gr.) in Black pepper (Piper nigrum L.). Journal of Biopesticides. 2013, 6(1), 1-5.
[49] Tchuenguem Fohouo, F.-N. Foraging and pollination behaviour of Apis mellifera adansonii Latreille (Hymenoptera: Apidae: Apinae) on the flowers of three plants in Ngaoundere (Cameroon): Callistemon rigidus (Myrtaceae), Syzygium guineense var. macrocarpum (Myrtaceae) and Voacanga africana (Apocynaceae). Doctorate Thesis, University of Yaounde I, Cameroon, 2005.
[50] Jean-Prost, 1987. L’Apiculture. 6ème édition, Paris: Lavoisier; 1987, pp. 1-579.
[51] Jacob-Remacle, A. Comportement de butinage de l'abeille domestique et des abeilles sauvages dans des vergers de pommiers en Belgique. Apidologie. 1989, 20(4), 271-285.
[52] Rice, W. Analyzing tables of statistical tests. Evolution, 1989, 43(1), 223-225.
[53] Mokam, D. G., Djieto-Lordon, C., Bilong Bilong, C. F. Patterns of species richness and diversity of insects associated with cucurbit fruits in the southern part of Cameroon. Journal of Insect Science. 2014, 2014, 14, 248.
[54] Feng, B., Qian, K., Du, Y.-J. Floral Volatiles from Vigna unguiculata. Are Olfactory and Gustatory Stimulants for Oviposition by the Bean Pod Borer Moth Maruca vitrata. Insects. 2017, 8(2), 60.
[55] Basualdo M., Bedascarrasbure E. & De Jong D. Africanized honey bees (Hymenoptera: Apidae) have a greater fidelity to sunflowers than European honey bees. Journal of Economic Entomology. 2000, 93, 304-307.
[56] Wright, G. A., Skinner B. D., Smith B. H. Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). Journal of Chemical Ecology. 2002, 28, 721-740.
[57] Rucker, R. R., Thurman, W. N., Burgett, M. Honey bee pollination markets and the internalization of reciprocal benefits. American Journal of Agricultural Economics. 2012, 94(4), 956-977.
[58] Fuzaro, L., Xavier, N. L., Carvalho, F. J., Silva, F. A. N., Carvalho, S. M., Andaló, V. Influence of pollination on canola seed production in the Cerrado of Uberlândia, Minas Gerais State, Brazil. Acta Scientiarum. Agronomy. 2018, 40: e39315.
[59] Kengni, B. S., Ngakou, A., Tchuenguem Fohouo, F.-N.. Pollination and yield attributes of (cowpea) Vigna unguiculata L. Walp. (Fabaceae) as influenced by the foraging activity of Xylocopa olivacea Fabricius (Hymenoptera: Apidae) and inoculation with Rhizobium in Ngaoundere, Cameroon. International Journal of Agronomy and Agricultural Research. 2015, 6(2), 62-76.
[60] Mbogning, E., Tchoumboue, J., Damesse, F., Sanou, S. M., Antonella, C. Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l’Ouest et de l’Adamaoua Cameroun. Tropicultura. 2011, 29(3), 168-175.
[61] Gruber, M., Sanda, M. Honey Hunting and Beekeeping in Adamaoua (Cameroon). Brückner D. (ed.). Topics in Interdisciplinary African Studies 51. Köln, Germany: Rüdiger Köppe Verlag,; 2019, pp. 1-108.
[62] Nchoutnji, I., Fofiri Nzossie, E. J., Olina Bassalan J.-P., Templen, L., Kamenin, A. Systèmes maraîchers en milieux urbain et périurbain des zones Soudano-sahélienne et Soudano-guinéenne du Cameroun: cas de Garoua et Ngaoundéré. Tropicultura. 2009, 2009, 27, 2, 98-104.
[63] Fouepe Takounjou, A., Foano Dandjio, W., Fodoue, Y., Fantong, W., Ngah, M., Jokam Nenkam, T., Carlier C., Vassolo, S., Montcoudiol, N., Enow Tarkang, C., Chounna, G., Kringel, R. Assessment of water availability for agricultural activities in the savannah Plateau of Adamawa-Cameroon. Environ Monit Access. 2022, 194(11), 813.
[64] Anderson, N. L., Harmon-Threatt, A. N. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Scientific Reports. 2019, 9, 3724.
[65] Baskaran, S., Kookana, R. S., Naidu, R. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pesticide Science. 1999, 55, 1222–1228.
[66] Gervais, J. A., Luukinen, B., Buhl, K., Stone, D. Imidacloprid General Fact Sheet. National Pesticide Information Center (NPIC), Oregon State University Extension Services, 2010. Available from:
[67] Bonmatin, J. M., Moineau, I., Charvet, R., Colin, M. E., Fleche, C., Bengach, E. R. Behaviour of imidacloprid in fields. Toxicity for honey bees. In Environmental Chemistry. Lichtfouse, E., Schwarzbauer, J., Robert, D., eds., Springer, Berlin Heidelberg, 2005, pp. 483–494.
[68] Sharma, S., Singh, B. Metabolism and persistence of imidacloprid in different types of soils under laboratory conditions. International Journal of Environmental Analytical Chemistry. 2014, 94, 1100-1112.
[69] Wagner, S. Environmental fate of imidacloprid. California Department of Pesticide Regulation (CDPR), 2016. Available from;
[70] Hill, B. D., Inaba, D. J. Dissipation of lambda-Cyhalothrin on Fallow vs Cropper Soil. Journal of Agricultural and Food Chemistry, 1991, 39, 2282-2284.
[71] Hornsby, A. G., Wauchope, R. D., Herner, A. E. Pesticide Properties in the Environment. New York: Springer; 1995, pp. 1-132.
[72] National Pesticide Information Center. NPIC: Lambda-cyhalothrin (Technical Fact Sheet). Oregon State University. USA, 2001, pp. 1-6. Available from:
[73] Fouelifack-Nintidem, B., Yetchom-Fondjo, J. A., Tsekane, S. J., Ngamaleu-Siewe, B., Kenne, E. L., Biawa Kagmegni, M., Tuekam-Kowa, P. S., Yomon, A. K., Kentsop-Tsafong, R. M., Dim-Mbianda, A. M., Kenne, M. Diversity and abundance of pest insects associated with the Ethiopian eggplant plants Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). American Journal of Entomology. 2021, 5(3), 70-91.
[74] Louveaux, J. L’abeille domestique dans ses relations avec les plantes cultivées. In Pollinisation et productions végétales, Pesson, P., Louveaux J., eds., INRA, Paris; 1984, pp. 527-555.
[75] Seeley, T. D., Camazine, S., Sneyd, J. Collective decision - making in honey bees: how colonies choose among nectar sources. Behavior Ecology Sociobiology. 1991, 28, 277-290.
Cite This Article
  • APA Style

    Taïmanga, Mohammadou, M., Mbianda, P. A., Adamou, M., Youssoufa, O., et al. (2024). Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon). American Journal of Entomology, 8(2), 31-59. https://doi.org/10.11648/j.aje.20240802.12

    Copy | Download

    ACS Style

    Taïmanga; Mohammadou, M.; Mbianda, P. A.; Adamou, M.; Youssoufa, O., et al. Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon). Am. J. Entomol. 2024, 8(2), 31-59. doi: 10.11648/j.aje.20240802.12

    Copy | Download

    AMA Style

    Taïmanga, Mohammadou M, Mbianda PA, Adamou M, Youssoufa O, et al. Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon). Am J Entomol. 2024;8(2):31-59. doi: 10.11648/j.aje.20240802.12

    Copy | Download

  • @article{10.11648/j.aje.20240802.12,
      author = {Taïmanga and Moukhtar Mohammadou and Pharaon Auguste Mbianda and Moïse Adamou and Ousmana Youssoufa and Boris Fouelifack-Nintidem and Andrea Sarah Kenne Toukem and Odette Massah Dabole and Oumarou Abdoul Aziz and Abraham Tchoubou-Sale and Abdel Kayoum Yomon and Sedrick Junior Tsekane and Martin Kenne},
      title = {Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon)
    },
      journal = {American Journal of Entomology},
      volume = {8},
      number = {2},
      pages = {31-59},
      doi = {10.11648/j.aje.20240802.12},
      url = {https://doi.org/10.11648/j.aje.20240802.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20240802.12},
      abstract = {Synthetic pesticides present worldwide risks of contamination of humans, livestock and the environment due to the strong persistence and the toxic residues in fruits and vegetables. Natural biopesticides of local plant origin present low persistence and are the best alternative for the control of crop pests. In the Adamaoua region (Northern Cameroon), few studies exist concerning effects of botanical pesticides on the behavior of beneficial insects. Studies aimed to draw up a list of pollinating insects on flowers of Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae), in situations of treatment with botanical pesticides compared to the situation of the use of synthetic insecticide and to determine the effect of the biopesticides on the behavior of the main floricultural insects. Field investigations were carried out during two cowpea cultivation campaigns (June to September 2021 and June to October 2022) in Dang (suburb of Ngaoundere) on the effect of leaves extracts of local plant origin on the foraging behavior of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) and the main sap-sucking insect Aphis craccivora Koch, 1854 (Hemiptera: Aphididae). Forty-four cowpea plots of 4x3.5 m each distributed according to the randomized complete block model (four untreated plots as negative control, four plots treated with the synthetic insecticide Parastar (40EC 535/ 10/IN, 20 g/l of imidacloprid and 20 g/l of lamda-cyhalothrin) as positive control, and 36 experimental plots treated with three concentrations (10%, 20% and 30%) of aqueous leaves extract of Calotropis procera (Gentianales: Apocynaceae), Eucalyptus camaldulensis (Myrtales: Myrtaceae), and Tithonia diversifolia (Asterales: Asteraceae) respectively, made it possible to conduct four treatments: (1) flowers left to freely pollination, (2) flowers protected against pollinators, (3) flowers visited exclusively by Ap. mellifera and (4) flowers protected against insects. Among eight species (four orders, four families and seven genera) recorded on the flowers of V. unguiculata, the domestic bee Ap. mellifera was the most common and collected nectar and pollen. The control plots and those treated with 10% or 20% aqueous leaves extracts allowed the bee to carry out its activity. Plots treated with 30% extract of each plant and those treated with the synthetic insecticide Parastar, drastically altered the rhythm and speed of activity in Ap. mellifera foragers. This behavior became less coordinated and slow on treated plants. It would be wise to use 10% or 20% aqueous extracts as botanical insecticides and an alternative to the synthetic insecticide Parastar.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Impact of Plant Extracts on the Pollination Activity of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) on Flowers of Cowpea Variety Feekem, in Dang (Adamaoua, Cameroon)
    
    AU  - Taïmanga
    AU  - Moukhtar Mohammadou
    AU  - Pharaon Auguste Mbianda
    AU  - Moïse Adamou
    AU  - Ousmana Youssoufa
    AU  - Boris Fouelifack-Nintidem
    AU  - Andrea Sarah Kenne Toukem
    AU  - Odette Massah Dabole
    AU  - Oumarou Abdoul Aziz
    AU  - Abraham Tchoubou-Sale
    AU  - Abdel Kayoum Yomon
    AU  - Sedrick Junior Tsekane
    AU  - Martin Kenne
    Y1  - 2024/05/24
    PY  - 2024
    N1  - https://doi.org/10.11648/j.aje.20240802.12
    DO  - 10.11648/j.aje.20240802.12
    T2  - American Journal of Entomology
    JF  - American Journal of Entomology
    JO  - American Journal of Entomology
    SP  - 31
    EP  - 59
    PB  - Science Publishing Group
    SN  - 2640-0537
    UR  - https://doi.org/10.11648/j.aje.20240802.12
    AB  - Synthetic pesticides present worldwide risks of contamination of humans, livestock and the environment due to the strong persistence and the toxic residues in fruits and vegetables. Natural biopesticides of local plant origin present low persistence and are the best alternative for the control of crop pests. In the Adamaoua region (Northern Cameroon), few studies exist concerning effects of botanical pesticides on the behavior of beneficial insects. Studies aimed to draw up a list of pollinating insects on flowers of Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae), in situations of treatment with botanical pesticides compared to the situation of the use of synthetic insecticide and to determine the effect of the biopesticides on the behavior of the main floricultural insects. Field investigations were carried out during two cowpea cultivation campaigns (June to September 2021 and June to October 2022) in Dang (suburb of Ngaoundere) on the effect of leaves extracts of local plant origin on the foraging behavior of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) and the main sap-sucking insect Aphis craccivora Koch, 1854 (Hemiptera: Aphididae). Forty-four cowpea plots of 4x3.5 m each distributed according to the randomized complete block model (four untreated plots as negative control, four plots treated with the synthetic insecticide Parastar (40EC 535/ 10/IN, 20 g/l of imidacloprid and 20 g/l of lamda-cyhalothrin) as positive control, and 36 experimental plots treated with three concentrations (10%, 20% and 30%) of aqueous leaves extract of Calotropis procera (Gentianales: Apocynaceae), Eucalyptus camaldulensis (Myrtales: Myrtaceae), and Tithonia diversifolia (Asterales: Asteraceae) respectively, made it possible to conduct four treatments: (1) flowers left to freely pollination, (2) flowers protected against pollinators, (3) flowers visited exclusively by Ap. mellifera and (4) flowers protected against insects. Among eight species (four orders, four families and seven genera) recorded on the flowers of V. unguiculata, the domestic bee Ap. mellifera was the most common and collected nectar and pollen. The control plots and those treated with 10% or 20% aqueous leaves extracts allowed the bee to carry out its activity. Plots treated with 30% extract of each plant and those treated with the synthetic insecticide Parastar, drastically altered the rhythm and speed of activity in Ap. mellifera foragers. This behavior became less coordinated and slow on treated plants. It would be wise to use 10% or 20% aqueous extracts as botanical insecticides and an alternative to the synthetic insecticide Parastar.
    
    VL  - 8
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Sections